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The t r u s t  region strategy provides a cambination of the steepest 

descent direction and the  quasi-Newton direction which depends on the f i t  

betwen a quadratic approximation of the  function and the  function itself. 

The EQW formula is frequently used t o  update t h e  Hessian of t h i s  

quadratic approximation; while this update seems the  most successful i n  

l i n e  search a lgor i thm,  it has not been analyzed i n  conjunction with a trust 

region strategy. 

date for unconstrained minimization problem; global and superlinear con- 

vergence theorems are given. 

We develop a trust region algorithm using the l3FGS up- 

We demonstrate how t o  implement t h i s  algorithm i n  a numerically 

s table  way. 

and has performed very sa t i s fac tor i ly  on test problems and on a large 

number of other problem; numerical r e su l t s  are provided. 

A canputer program based on t h i s  algorithm has been written 
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1. Introduction 

This paper deals with the problem of minimizing a snooth non- 

l inear  function f :  IRn + R. 

problem; the  algorithm starts at sane s t a r t i ng  point xo and generates 

a sequence 

problem, x , such tha t  i n  a neighborhood of the  solution, x 

minimizer of t h e  function. 

We derive i t e r a t ive  algorithm for this 

k {x 1 that generally converges to  a local solution of the  
* * is a 

In Section 2 w e  derive the trust region algorith;  the  convergence 

results of tm versions of the algorith are given i n  Sections 3 and 4. 

In Section 5 r e  discuss t he  implementation of the algorithn =id provide 

numerical resu l t s .  

In the  development of the algorith we assume that the  first deriva- 

t i v e  of t h e  function f is available but the algorithm makes no use  of 

second derivatives and instead uses approximations t o  them. 

Notation Convention: Throughout t h i s  paper we use superscripts t o  
t h  denote the i te ra t ion  we are in .  Thus sk is the  s tep at the  k 

i terat ion.  

parentheses i n  t h e  following way: (&)j denotes the  jth power of the 

matrix Bk where E? is a matrix associated with the  kth i te ra t ion .  

In order to  avoid confusion with powrs of mtrices w use 

We are interested i n  finding a local minimizer for t h e  problem 

I 

min f(x) .  (1.1) 
x E  R"  

We w i l l  use an i t e r a t ive  method; s t a r t i ng  with a p o i n t  xo we w i l l  create 
i R a finite sequence of points (x 1 i = 1,. . . , E  where x satisfies t m : ~  03: 

the  stopping criteria that w i l l  be specified. We w i l l  assume tha t  f is 

twice continuously differentiable and that there ex i s t s  a Lipsc.hitz coc- 

s tan t  K such tha t  11 ?f(x)-V2f(y)II 5 Kll x\-yil 

and that f is bounded below. 

fo r  all x , y  e Rn 



-2- 

* 
A t  a local minimizer x the gradient Vf(x*) is zero and the  

* 
Hessian matrix ?f(x ) is posit ive semi-definite. We ass~vne that at 

every local minimizer the Hessian matrix is posi t ive definite. In our 

algorithm VE approximate the Hessian rratrix V f ( x )  by a matrix B. 

Thus using Taylor's theorem w have for  -11 

2 

1 1  s 11 

f (x+ s) z q(x+ s) 5 f (x )  + Vf(x) T s + 3 s  T E3s (1.2) 

We w i l l  use the  BFGS update due t o  Broyden (1970), Fletcher (1970), Gold- 

farb (1970), and Shanno (1970) t o  update E? at each i te ra t ion .  

y = Vf(x + s  ) - Vf(xk) and cyk) sk > 0 then 

If 
T k k k  

(1 .3 )  

Otherwise E?'' = #. If Bk is symnetric and posi t ive def ini te  then so 

is &+I; mreover i f  E?'' is given by (1.3) it satisfies the secant 

equation $+Isk = yk. 

A c m n  method of using (1.2) is t o  compute pk at each i t e r a t ion  
k k k T  k such that p minimizes q(x + s )  = f(xk) + Vf(x ) s + *sTBks. The 

solution pk = -(#)-I f (xk) ,  the  Quasi-Newton (Q.N.) step is a descent 

direction since k T  k 
(p ) Vf(x ) < 0. 

Line search techniques are often used t o  determine pk such that 

sk = pk pk w i l l  be an acceptable step. One ccIITIx)I1 strategy imposes the 

following conditions: (see Wolfe (1969). 

A t  each i te ra t ion  f i n d  vk that  satisfies 

where a,B are constants such that a < 8, O <  a <  B <  1.) 



Under the  assurptions t h a t  we made on f ,  there always e x i s t s  an interval  

[p,p] such that i f  p c [r,K], both conditions are satisfied. For a 

proof see e.g. Dennis and Schnabel (1980). 

- k - =  

Powell (19763 showed that i f  f is s t r i c t l y  convex and when a BFGS 

update is used t o  update the Hessian approximations and the tm conditions 

(1.4) are satisfied at each i t e ra t ion ,  then {xi) -+ x and the  mvergence 

is superlinear. 

* 

2. TheTrust Regh Model 

The quadratic approximation i n  (1.2) is c l ea r ly  not val id  fo r  a l l  
k values of s. We w i l l  now define a sphere around the  current point x , 

{x = x + s: Ilsl12 - < r and call it the trust region with the inteqre- 

ta t ion  that we trust q only wi th in  a radius rk fran x . The detemi-  

nation of rk w i l l  be discussed later i n  t h i s  section. 

k k 

k 

We 

min 
S 

In order 
rn 

. 

now want t o  solve the problem 

q(xk+s) - f ( 2 )  + Vf(xkITs + + sT+s s.t. 11s 1 1 2  5 r k . (2.1) 

t o  obtain a solution t o  t h i s  problem let us rewrite the constrai,;;. 
k 2  as & sls 5 &(r ) . 

t h e  Karush-Kuhn-Tucker conditions are suff ic ient  (see, e .g . ,  Avr ie l ) .  The6 

i f  we can f i n d  s and X such that 

Then we have a convex programing problem f o r  which 
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k k Vf(x ) + B s + As = 0 

s w i l l  be the global solution t o  (2-1)- From (2.2) s S(A) = 

-(Bk + XI)-lVf(xk). 

- ( B  ) Vf(x ) is the global solution of (2.1). Otherwise 

Q ( ~ ( o ) ~ s ( 0 )  -(rk)2) > 0. Clearly for  X >> 0 ,  s ( A ) ~ s ( X )  - (rk)* 

since s(X) is a continuous function of A,  there exis ts  A > 0 with 

If (2.3) is sa t i s f i ed  fo r  s = s(0) then s(0) = 

k -1 k 

0 and 

T k 2  gs(X) s(X) - (r ) ) = 0. Such a step once again sa t i s f i e s  (2.2) - 
(2.5) and therefore is the  global solution of (2.1). 

k The resulting step i n  the k ' th  i terat ion,  sk, associated w i t h  X is: 

k k  k k -1 sk = s (A ) = - (B +A I) Vf(xk) 

(2.6) k where Ak = 0 if I I s  (0) I I 5 
ik > 0 is s.t. 11s k k  (A ) I 1  = rk otherwise 

In the following discussion we anit the  sqperscripts; also V f  denotes 
k Vf(x ). 

Lemma 2.2.  

I I ~ ( A )  I l 2  = I I - ( B + A I ) - ~ P ~ ~  l 2  is a continuous convex function monotonically 

decreasing t o  0 as A +a. 

The nom of the step s ( h )  as a function of A > 0 ,  i . e . ,  - 

Proof. See Vardi (1980). 
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After a solution to (2.1) is obtained w e  check whether 

f ( x + s )  < f (x) .  

because the  quadratic approximation did not prove t o  be re l iab le  on the 

sphere with radius r, wle w i l l  lover the radius and recOmpute the  s tep.  

If this is not the  case, we w i l l  reject the  s tep ,  and 

The following lema w i l l  be needed when analyzing the  algorithm. 

LRrrma 2.3 For any integer p > 0, matrix B and g E IR", we have 

that Ap*(B+ AI)-p*g + g as A + 03 

LRmna 2.4. ut 

where X(r) is  such that lls(X(r))l12 = r (for r - < l/B-'Vf(x)Il2). Then 

if Vf(x) # 0 ,  there exists r > 0 small enough such that f(x+sr) < f(x).  

Proof. Let 
_I_ 

t(r) = f (x+sr). 

It is suff ic ient  to  show that for a l l  r > 0 snall enough, t ' ( r )  < 0. 

ah  - -  a t  - - .  a t  
ar a h  ar - -  a h  - Vf(x-(B+X(r)I)-1Vf(x))T(B+X(r)I)-2Vf(x) e E , 

Since r = 11 sr 11 ve find that 

= - [Of ( x ) ~  (B+A (I-) I)  -2Vf (x) 3 -'I2 [Vf (x) (B+A (r) I) -%f (x> j 

(2 ,9 )  
r 
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To ccmplete the  proof WE! have t o  show that fo r  r > 0 small enough 

When r + 0, Vf(x- (B+ X(r)I)”Vf(x)) + Vf(x) 

(A(r))2(B+ X(r)I)’2Vf(x) + Vf(x). 

and by using lgrma 2.3, 

Thus (2.10) is sa t i s f ied .  

The trust region algorithn can be vi& as a d i n a t i o n  between 

the  quasi Newton direction and the steepest descent direction. 

is that when r >> 0, re f lec t ing  a caqlete trust i n  the quadratic approxi- 

mation, the  trust  region includes the Q. N. s tep,  A = 0 and s = -B-lVf(x). 

When r is very -1, ref lect ing very l i t t le  trust i n  the quadratic 

approximation, X >> 0 and the tern AI dominates the tern B in the 

expression s = -(B+AI)’%f(x). (See Lenrna 2.3) Therefore s = - Vf(x) 

and this is a short s tep  along the  steepest descent direction. 

The reason 

1 

H e r e  is a first sketch of the algorithm. 

Algorithm I: 

step 1: 

Step 2 :  

Step 3:  

Step 4: 

Step 5: 

Step 6: 

Step 7 :  

Step 8: 

0 0 0  Start with x , r , B , k = -1. 

k = k+l. 
Find A k and s k such tha t  11s k ] I 2  = II-(B k +A k I) -1 Vf(xk)llz 

k k  k - < rk and A ( r  - ] I s  11,) = 0. 

Check i f  f (x +s ) c f (x ) . 
t o  Step 3. 

Check for  convergence. 

Compare q (x +s ) with f (x +s ) and Vf (x )+B s with 

Vf(x +s ) and accordingly set r 

Compute yk = Vf(x +s ) - Vf(x ) and update B 

BFGS(B ,s ,y ). 

xk+’ = xk + sk ;  return t o  Step 2 .  

k k  k k If  not, reduce r and return 

If  not achieved, continue. 
k k  k k  k k k  

k k  k + l  
, 

k k  k k+l - - 
k k k  
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. 

We w i l l  analyze two versions of t h i s  algorithm. The f i r s t  one 

uses similar conditions t o  (1.4) and is the subject of Section 3. 

second version is very close t o  the way t h e  algorithn is actually imple- 

mented and is described i n  Section 4. 

The 

3. Analysis of the F i r s t  Version of t h e  Algorithm 

In  order t o  obtain Algorithm I1 we first modify the definit ion of 

s as follows: r 

sr = - (B+XI)-'Vf(x) with X - > 0 s.t. 11 sr1I2 = r 

r < 11 B-lVf(x))I (3 .1)  

(The necessi ty  t o  a l l o w  steps that are longer than Q.N. s tep was first 

pointed out by Mike Pearlman. ) 
k k  k We also replace the  condition f ( x  + s  ) < f ( x  ) i n  Step 4 by trm 

conditions that are similar to the conditions i n  (1.4). 

W e  accept the step s: i f  r = rk s a t i s f i e s  

k where sr is a s  defined i n  (3.1). 

w i l l  enable us t o  prove global convergence for this algorithm; unfortu- 

nately,  it may be inpossible to sa t i s fy  (3 .2)  i f  f is not. convex. I n  

order t o  assure fast local convergence the algorithm wi l l  also require takiug 

the Q.N. step s = - B-'Vf(x) whenever it s a t i s f i e s  (3.2), 

The imposition of these conditions 
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The basic difference between Algorithm I and I1 is that  i n  

I1 the radius does not play a significant ro le ;  t h e  choice of the  

s tep at each i te ra t ion  can be described i n  t e r n  of X only. 

t o  describe it in terms of the radius t o  s t r e s s  the s imi la r i t i es  between 

the two algorithms. 

i n g  an i n i t i a l  t r i a l  value of A ~ + '  a t  the (k+l)s t  i t e ra t ion .  

We choose 

k In addition, the value of r can assist in  determin- 

Algorithm 11: 

Step 1: 

Step 2: 

Step 3 :  

Step 4: 

Step 5 :  

Step 6 :  

S ta r t  with xo, ro, Bo,  k = -1; f ix  c1,6 such that a < 3 ,  

O < a < B < l .  

k = k+l. 

Find r = r such t ha t  i f  s: is canputed according t o  (3.1) 

both conditions i n  (3.2) are sa t i s f i ed .  

rk = I I (B ) 

step s a t i s f i e s  (3.2).) 

Check for convergence. 

Compute yk = Vf(x 4-s ) - Vf(x ) and update B 

k 

(Try first 
k -1 vf(xk) I I ,  i . e . ,  check whether the Q. N. 

If not achieved; continue. 

k k  k k + l  = 

k k k  BFGS(B ,s ,y ) .  

X k+l = xk + sk; return t o  Step 2 .  

We w i l l  show that if Algorithm I1 is followed then 
k lim in f  11 Vf(x ) I /  = 0. We first show that  Algorithn I1 is w e l l  defined. 

k- 

kmna 3.1. Assume f is s t r i c t l y  convex. Then there exists an interval  

[r,F] such that  for a l l  r i n  [r,F], f ( x + s r )  < f ( x )  f aVf(x) T sr and 
- 

T T Vf(x+sr)  sr > BVf(x) sr. (Again, superscripts are m i t t e d . )  
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Proof. Let u(r)  - f(x+s,) - f(x) - aVf(x)Tsr. For r c IIB-lVf(x)ll2, 

use the definit ion of sr in(3.1) t o  get 

By us ing  (2.9) and (3 .3)  

l i m  u' (r) = l i m  { - [ - V f  (x+sr) T (B+A (r) I) -'sr+aVf (x) T (B+A{r) I) -Isr] 
P O  P O  

= [vf(x)Tvf(~)]1~2(-1+.)/[vf(x)Tvf(x) J < 0 

Since u(0) = 0 ,  we obtain,for r > 0 small enough, u(r) < 0 .  I f  for  a l l  

r > 0 u(r) < 0 ,  using the definit ion of s for  r > I IB-'Vf(x)l I i n  (3.1), 

we would get  a contradiction to  the assunption tha t  f is bounded belcw. 
r 

Let 7 be the smallest r > 0 such that  u(r) = 0 .  Let v(0) = 
T f(x+es - I ) - f(x) - eavf(x) s - - . 

r r 

Hence ~ ' ( 1 )  = Vf(x+s Z E  ) s - aVf(x) s - - -  > 0. Thus Vf(x+sJTs a _._ > 
T 

aVf(x)Ts - - > BVf(x) s - . Because Vf(x+sJTsr - BVf(x) sr is conTjnUou5 l i l  

T r ,  there exis ts  an F E ( 0 , 3  such that  for a l l  r E [F ,q ,  Vf(x+s ) s 

BVf(x)Tsr. Because u(r) < 0 for a l l  0 < r < 7, both condition:; Zre 

sat isf ied in [F,Y]. 

v is  convex. bbreover, v(0) = v(1) = 0. 

T T 

r r  T T r  I- 

r r 
r -- r 
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From now on we assme that at each i te ra t ion  we can obtain a radius 

r that satisfies (3.2). 

very close t o  Powell's (1976, Section 3 ) .  

proved there.  

The l i n e  of proof of global convergence is 

Lemnas 3 . 2  and 3 . 3  are 

2 0 
~emna 3 . 2 .  Assume I I V  f(x) 1 1  < $ for x i n  the level set (x: f(x) - c f (x  ) } .  - 

k k  k Let yk = vf(x +s ) - Vf(x ) . 
T 

Then we get the inequality 
k 2  (I1 Y I I  8) 5 JI. 

l 0 
- 

2 Larma 3.3.  Assume tha t  1 I V  f(x)II 5 $ on {x: f (x )  < f ( x  ) I .  

I f  Bk+' = BFGS(B ,s ,y ) then k k k  

for some constant C4 > 0 and for  a l l  k = l , Z ,  ... . 

LRmna 3.4. For all j 

Proof. See Vardi (1980). 

Using now Lmna 3.3 and Lemna 3.4, we obtain the  inequality 
m 

k J l;;(xJ) I l;-sJiyJ 
n C4k V k = 1 , 2 ,  ... . ( 3 . 5 )  

j=1 [s (-Vf(x ) ) ]  

Since a t  each i te ra t ion  the B condition i n  (3 .2)  is s a t i s i f i e d ,  i. e . ,  
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vf(xj+sj)Tsj  > BVf(x j T j  ) s 

we have 

(3.6) ’ T j  T 
y j  s j  = [Vf(xj+ SJ) - Vf(xj) ] s j  - > -(l-B)Vf(xJ) s , r 

I 

I -  

. 

F r o m  (3.5) we obtain 

(3 .7 )  

Froof. Let eJ be the angle between sJ and -Vf(xJ). From (3.6) we have - 

Recall that  the cx condition in  (3 .2)  gives at each i t e r a t i o n  

k .T 
Q .l .‘r ( - V f ( J ) )  < f(xl) - f(x2) + f(x2) - f (x  3 ) + ,,. - 

k k+l) j =1 
+ f (x  ) - f (x  

k+l) - < f(2) - f (x  . 

converges to  zero as j tends to  inf ini ty .  
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If we assuine now tha t  I I p f ( J ) (  I is bounded away from zero we 
get a contradiction. Ne then have I lsJ 1 I *cos(8 j ) j~ o s o t h a t  

[ I  Ivf(xj) I I ]/[I Is: I I  COS(^^)] j r  w .  This implies that for  a l l  s u f f i -  

ciently large j ,  [ I Ivf(xj) I I ] / [  1 15% I 1 *cos(ej) J > 2C5. Thus there ex is t s  

k such that  

r 

Corollary 3.6 When f is a convex function,if  t he  sequence {xk> has 

a l i m i t  point  x then x is the global minimizer of f .  In par t icu lar ,  

i f  f also has a bounded level  s e t ,  then the  hypothesis of the  theorem 

holds and x -+ x , the  global minimizer. 

* * 

k *  

We now establish the  local properties of algorithm 11. We w i l l  assume, 
k *  based on our global r e su l t s ,  t ha t  

s 4 0 for a l l  k, The main tools to  establish local convergence have 

been established i n  a classic paper by Broyden, Dennis and Mor6 (1974). 

LRmna 3.7 and Theoren 3.8 are proved there. 

l im x = x , a local minimizer, and tha t  
k 

2 Let FI = [ V  f(x*)]''2. Define the nlatrix norm I IC1 lEVl  = I lMcsrll I F  where 

\$e will also use the fact  that there exis t  a constant q > 0 such that  

for  every n x n matrix A,  

. 
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hnna 3.7. For a l l  u,v c IRn 

Y 

2 I I Of (u) - Vf (1:) - v f (x*) (v-u) 1 I < xu (u,v) I lv-ul I - 

where u (u ,v) = maxi I lu-x* I 1 , I Iv-x* I 1 1. Furthermore, i f  V 2 f (x*) is 

invert ible ,  there is an E > 0 and p > 0 such tha t  u(u,v) < E implies - 

Theorem 3.8 .  

1 1 B - l  - V2f(x*)-11 l M  < 6 and x = x+s for some s tep s ,  B +  = BFGS(B,s,y) 

where y = Vf(x+s) - Vf(x) , then B i s  nonsingular and them exist a1 > 0 ,  

There exist E > 0 ,  6 > 0 such that i f  IIx-x*ll < E ,  

+ 

+ 

> 0,  a3 > 0 such tha t  a2 

The following theorem guarantees that i n  a neighborhood of the solu- 

t i on  the Q. N. step s = -B-%f(x) will sa t i s fy  (3.2). 

??leorem 3.9.  

II(Bo)-l - V 2 f(x*)-'//bI < 6 then for a l l  k ,  rk = [ I ( B  k ) -1 Vf(x k ) 1 1  s a t i s -  
There exis t  positive E and 6 such tha t  i f  I (x 0 -x*i I < E and 

Furthermore, i f  xk+' = xk - (B I: ) -1 Vf(xk) fies both conditions i n  (3.2). 

and Bk+' = BFGS(Bk,sk,yk), then I Ix k+l -x*ll < E and ll(B k+l ) -1 - 
V2f(x*)"lIM < 26 for  a l l  k. Finally, IIx k+l -x*II < t l I x  k -x*Ii for 

0 < t < 1 for a l l  k so that {x k } converges t o  X* l inear ly ,  
- 
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m f .  

and can be found i n  V-i (1980). 

This t h e o m  is similar to  theorem 3.4 in Broyden, et al. (1973) 

~arma 3.10. Let {$ k } , { 6  k 1 be sequences of nonnegative numbers such that 

k 00 k k  @k+l - < (1+6 )@ + dk for a l l  k and 1 gk c =. Then { $  1 converges, 
k=l  

Proof. - See Dennis and Mor6 (1974, l e m a  3 . 3 ) .  

Corollary 3.11. 

I I ( B ~ )  

Under the conditions of Theorem 3.9, 

- v2f(x*) -' I lEl converges. 

Proof. From I Ixk+l - x* I I 5 t I Ixk - x* 1 I we conclude that 

(3.11) 

Hence fran (3.10),(uld lermra 3.10 the  conclusion follows. 

Theorem 3.12 w i l l  be a step i n  showing superlinear convergence t o  x*, 

This theorem is proved i n  Dennis and Wr6 (1974). 

o *  Theorem 3.12. There exist E > 0 and 6 > 0 such that if 11 x -x 11 E,  I IB 0 ) -1 -v 2 f(x*)-'IlM < 6 then 

k+= 1 lYkl I 
(3.12) 

k where yk = vf(xk+') - vf(x ) V k = lJ,. .. , 
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0 
Theorem 3.13. There exist E > 0, 6 > 0 such that if I Ix -x*l I < E ,  

2 I I (Bo)-1 - v f(x*) -'I 
i.e., 

< 6 then q-superlinear convergence is achieved, 

Proof. Let ~ , 6  be as in Theorem 3.9. Observe that 

k 2  k 2  k 2  k [B -v f(x*)]sk = [ I - B  v f(x*p][y -v f(x*)s ] 
k k - 1  2 -1 k -B [ ( B  1 -v f(x*) J y  . 

This implies 

I lskl I I lskl I 

I lYkI I 1 }ski I 

Iarmas 3.2, 3.7, Theoran 3.12 and t h e  assumptions imply that 

k 2  

= 0. (3.14 
I I [B -v f(X*) Isk( I 

lim 
k- I lskl I 

E and 6 were chosen i n  Theorem 3 .9  such that  for all k, sk = - (B k ) -1 Vf(x ic ) , 
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k 2  k 2  k 2  k+l) [B -V f(xk)]sk = -Vf(x ) - V  f(x*)sk = y -V f(x*)sk - Vf(x , 

Thus 1- 3.7 and t he  l i m i t  i n  (3.14) imply that 

= 0. 
I IVf(Xk+l) I I 

1 i m  
k- I bkI I 

(3.15) 

2 Now lama 3.7 also guarantees that because V f(x*) is positive def ini te ,  

i f  E is small enough there exist  p > 0 such that 

and therefore 

k k+l k k k where 'I = IIx -x*II/IIx -x*lI. Thus (3.15) implies that  T / ( l + ~  ) 

converges t o  zero and hence T~ converges t o  zero as desired. 

4.  A l g o r i t h n  I11 and its Local Properties 

In  order t o  obtain Algorithm 111, v.e only have t o  c l a r i fy  Step 6 

i n  A l g o r i t h n  I .  Step 6 now becanes 

(4.1) 
k k k  rk+' = 11s I I i f  O.l[Vf(xk)Tsk + 4 sklBksk] > f(x +S ) - f (x  
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I -  

k 'fie following lsrrma guarantees that  r k+l - > I( s 11 near the  

solution. 

LRmna 4.1. 

I Ix+s-x* I I < E and I IB-l-$f(x*)-lI I M  < 26  then 

Tnere exist positive E and 6 such that i f  I Ix-x* I I < E ,  

f(x+s)-f(x) < O.l[Vf(x)Ts + 4 s  T Bs]. 

Pro0 f . - 

T T T T -[Vf(x) s + 3 s  Bs]  = -[Vf(x) (B+AI)-l(B+AI)s + 3 s  Bs] 

T T T 1 Is1 l 2  
= -[-s (B+AI)s + 4 s  Bs] > 4 s  B s  > 9 

- IIB-1112' 
- 

f (x+s)  -f (x) = f (x+S) -f (x) -of (x) T s - 3 s T BS + (Vf (x) T s + 8 s  T Bs) 

T T T T 0.9 
+(Vf(x) s + 4 s  Bs) < O.l(Ff(x) s + 2 s  B s ) .  - < B l l S I 1 2  - - 

The following theorem guarantees q-superlinear convergence of the 

algorithm i n  a neighborhood of  the  solution. 
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0 Theoran 4.2.  

and I I (Bo)-1-V2f(x*)-11 I E I  < 6 and if Algorithm I11 is f o l l o w ,  then 

for  a l l  k 

exis t  P. large enough such that  Ak = 0 for  a l l  k - > R. Finally, 

~ l x ~ + ' - x * l /  - < t l l x  -x*l~ for  o < t < 1. 

There exist positive E and 6 such tha t  i f  I Ix -x*l 1 < E 

k 1 Ix -x*l I < E and I I (Bk)-l-V2f (x*) < 26. Further, there 

k 

-- Proof. By induction. 

Let E ~ ,  61 be the E and 6 from theorem 3.8. Let E ~ ,  62 be the 

Choose y > 1 1 0  f(x*)-'l 1 ,  o > llV2f(x*)I I ,  2 
E and 6 from lenmla 4.1. 

and 6 > 0 .  

Let 

where is  defined in  (3.9). 

263 implies I IB-'Vf(x*) I I - < l/dc. Let t *  E ( G J )  and let 

Let c3 be such that  I Ix-x*I I < c3 implies that  I ] O f  (x) I I - < 5.  

= c/rO, where r 0 is  the initial radius, Let q=x/[x+1/(26ql+y)] 

Let 63 be such that  1 1 B - l -  V2f(x*)'11/M < 

Let c4 be such t h a t  

and 

Let E = min{E1,E2,E3,E41. 

(4.2) 

0 0 0  If A' > 0 then 11s I I = I I - ( B  + A  I)-lVf(xo)~ I = ro. Thus lo - .: 
0 0 0 0 0 -1 IIVf(x )[l/r and since IIx -x*lI < E3,  < Note tha t  ll(B ) I (  

- < I I [ (Bo) -'-V2f (x*) -l] I I + I  I v2f (x*) -'I I 5 2r16+Y. Now 
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I -  

* 

IIxl-x*II = IIx 0 -(B 0 0  +A I)-lVf(x 0 )-x*ll 

= I I - (B 0 +A 0 I) -1 [Vf (xo)-Vf (x*) -V 2 f (x*) (x 0 -x*)] 

+ [V2f(x*)-l-(B 0 ) -1 ]V 2 f(x*)(xo-x*) 

+ [(B')-~-(B 0 0 - 1 2  +A I) 10 f(x*)(xo-x*>l I 
< I I (B 0 ) -1 I I I l V f  (xo)-Vf (x*) -Vf (x*)-0 2 f (x*) (xo-x*) I 1 
- 

+ I I (Bo) -'-V2f (x*)-' I I I I V 2 f  (x*) I I I 1xO-x" I I 
+ { A o  [ X o + l / [  I (B ) 0 -1 0 -1 2 I \ ] > I  I (B ) V f(x*) 1 1  I Ixo-x*l 1 .  

We now use l e m  3.7 and (4.2) t o  get 

1 Thus I I x  -X*lI < E .  

We next use theorem 3.8 t o  show (as i n  theorem 3.4 i n  Broyden, 
1 -1 2 et al. (1973g)that 1 I (B ) -V f(x*)-'l I I d  < 2 6 .  We also notice that 

lemma 4 .1  and Step 6 as se t  in ( 4 . 1 )  imply that  r 1 > llsoll. - 
Similarly, we can show by induction that  if I lxj-x*l I < E: and I I $1 

-v2f(x*)-'l l M  < 26 for  j=1 ,2 , .  . . ,k then I lx k+l -x*l I < t*l Ix k -x*l I < E ,  - 

(4.3) 
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There rmst therefore be an R large enough such that XR = 0. 

X > 0 for a l l  k implies that  I I s  I I = rk - > ro for  a l l  k and th i s  contra- 

diets (4.3). 

Otherwise, 
k k 

A l s o  

In addition, we have 

We w i l l  show now that Xk = 0 for a l l  k - > R. By induction, it is 

sufficient t o  prove that  X R + 1  = 0. 

similar way t o  (4.4 ) that  I Ix 

Thus 

Observe first that we can show in a 

- (B  ) Vf(xR+l) -x*l I ~ + l  IX'+'-X*l I .  R + 1  R + 1  -1 

R + 1  -1 R + 1  -1 Vf (xR+l) I I = I I xR+l - (B I I - (B ) ) Vf (xR'l) - X R + l  I I 

From the definition of the step (see Algorithm I, step 3), we see 

that AfJ+1 = 0. 
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We complete the proof by induction. If I xj-x*l I < E ,  

j -1 2 k k + l  
-7 f(x*)'l(JM < 26 for j=1 ,2 ,  ..., k and X = 0 ,  then IIx (((B ) 

<dl Ix -x*l I < E ,  I I (B 
the proof of the theorem. 

-x* l [  
k k+l -1 2 

) -V f(x*)J I < 6 and Ak+' = 0. This completes 
- 3  

k 
Corollary 4.3.  The sequence {x 1 generated by Algorithm I11 when 

Proof. 

and 3.13. 

Same proof as  in the case of A l g o r i t h m  11. See Theorems 3.12 

5 .  Implementation 

Algorithm I is an i t e r a t ive  one. Steps 3-8 describe what happens 

i n  each specif ic  i t e ra t ion  and w i l l  be discussed here i n  detail. Since 

we confine ourselves i n  t h i s  chapter to  one specific i te ra t ion ,  we cmit 

the superscripts. 

We want first t o  carrnent b r ie f ly  on scaling. Generally speaking, 

problem 1.1 is sa id  t o  be badly scaled i f  camparable changes i n  tm 

coordinates of x lead to  very different changes i n  the  function f .  

That can happen when t h e  Hessian matrix of f has a large condition 

number. When 

that the problem is w e l l  scaled. 

t o  have a trust region with an e l l ipso id  shape rather than a sphere. The 

solution of (2.1) muld  then be s = -(B+X diag(d))-'Vf(x) where d is 

some posit ive vector that reflects t h e  scaling of the problem. 

of convergence that vie presented would still hold for t h i s  mde1. 

assume tha t  the variables have been scaled i f  necessary so that  the 

Euclidean norm is appropriate. 

use the Euclidean norm i n  (2 .1)  WE! have actual ly  assumed 

By using a different  norm it is possible 

The theory 

We 
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T Ye use the  C h o l e w  decanposition of B, B = LL . The 

set t o  the ident i ty  matrix multiplied by the  constant 

In  each i te ra t ion  instead of deriving $"'I 
k L~+' fran L . 

from 8, 

Step 3 of the  Algorithn: 

Assume we are i n  a new i te ra t ion  at the  po in t  x 

0 i n i t i a l  L, L is 

0. I( 11 vf(xo) 11 /ro>'. 

w? W i l l  derive 

and have already 

observed f ( x ) ,  Vf(x). A l s o  available are a lower tr iangular matrix L 

and the radius of the  trust region. 

fined i n  step 3 of the algarithn. 

We wish t o  find a s tep s as de- 

We use the notation 

-T -1 We first canpute the  Q. N. step s ( 0 )  = -L L Vf(x) and hence 11 s(0)I) 

If  Ils(O)]I - < r then A = 0 and we can go t o  the next step. 

we have to find A such that  I Is ( A )  I I = r. 

by $ (A) = I Is(A) 1 1  - r; we want to find a zero of this function. 

-2.2 we can conclude that $(A) i s  continuous and convex. 

If lIs(O)II>r 

Define now the function $(A) 

Fran 

@(A) de- 

We creases mntonically t o  -r and has a unique zero because @(O) > 0. 

know mre about the  zero, A , of this function; since 
* 

$(A*) = 

I I - (B+A*I)-'Vf (x) I I -r = 0 we have A* - < I Ivf (x) I I/r. Also because of the 

convexity of 0, A* - > -$(O) /$ '  (0).  

following i terat ive process that w i l l  converge to a 'r; > 0 such that 

I $(x) I 5 0.1 x r. 

(1973) and Mor6 (1978) for Nonlinear Least Squares problems. 

All this  information leads to the 

This i t e r a t ive  process was first suggested by Hebden 
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Step 1: 

Step 2 :  

Step 3: 

Step 4:  

, Step 5: 

Let to = -$(O)/+’ (01, uo = I lvf(xO)l I/r. 
Let X be a guess of the solution (which i s  determined in  0 

the previous i t e r a t ion  of the algorithm; see below). 

S e t j = O .  

If X j  does not l i e  between kj and u j ,  

A j  = max{o.oolu~,(R~.u~)l’*~.  

Compute $ ( A j )  and i f  l $ ( A J ) l  < 0.1 . r ,  stop. 

Let 

CaApute ( A j )  and set 

go t o  step 2.  

It  may hagpen ra re ly  that the A-iterative process does not converge 

We w i l l  a l l o w  only ten A-iterations and accept t he  tenth fast enough. 

i t e r a t ion  even i f  the condition i n  step 3 is not satisfied. 

In our nunerical experiments it took 1.6 A-iterations per x-iteration, 

on the average, before convergence i n  step 3 was achieved. 

For the  different  A’s that appear i n  this A-iterative process we 

have to determine $(A),  + ‘ ( A ) .  We have 

@ I  (A )  = - [Vf (x)~(B+AI)-~V~(X)]/[V~(X)~(B+XI)-~V~ (x)I1/’ 

(5.2) 
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T s o )  is the solution of the system (LL +xI)s(A) = -vf(x), h i c h  

can also be written as 

(5.3) 

To solve this l inear  least squares problem we have to  f ind a (2nx2n)  

orthogonal mtrix P and an upper triangular R such that  

(5.4) 

We note that L-lVf(x) that  appears i n  the r ight  hand side of (5 .3 )hm 

already been computed. Also notice that because of the special s t ructure  

of the matrix 

it is possible to apply Givens transformation to  this  matrix to  zero its 

lower par t  
T par t  of L . 

4 ( A  I) without introducing zeroes i n  the  lower triangular 

We do not have t o  store P; the  canputations that have to  

be done with P will be done while the  decomposition is taking place. 

h t  u s  par t i t ion  the  matrix P in to  tufo nx n mtrices P =[FJ. - 
Now we have f ran  (5.4) 

and from (5.3) 
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A l s o  fran (5 .2)  

4 

$ ' ( A )  = - [s (hIT(B+AI) -ls ( A ) ]  
I ls(A) I I 

Thus i n  steps 3 and 5 of t h e  

t o  canpute $ ( A )  and $ ' ( A ) .  

A-iteration process we use (5.5) and (5.6) 

Steps 4-6 of the  A l g o r i t h n :  

We have three tests tha t  are designed t o  check three stopping 

c r i t e r i a :  

t e s t .  

and funmin - a lower bound on the function. 

'Ihe f convergence test, vf convergence test and x convergence 

In the program the user is asked t o  specify tzl > 0 ,  E~ 2 0, c3 > 0 - - 

f convergence test - stop i f  f (x) - funmin < 

Vf convergence t e s t  - stop i f  Ilvf(x)J I < c2 

x convergence t e s t  - stop i f  I Is1 1. < ~ ~ ( 1 1 x 1  ]+I). 

?he user's E ~ ,  E ~ ,  should depend on the required accuracy i n  his 
-8 -5 specific application. For the t e s t  problems we use = 10 , c2 = 10 , 

and c3 = 10 -10 on our IBM/370. 
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After sk is accepted and xk+l = xk + sk the  program has  a 
k+l) and Vq(x k+l k+l) series of tests t o  canpare q(x ) w i t h  f ( x  

wi th  Vf(xk+l). The new radius is set t o  r k+l = I%) *I[ skll 
k+l according t o  t h e  f i t .  If  f ( x  

s tep with r = 2rk before moving t o  the next i t e ra t ion .  

f (x+)  > f (x )  we set rk = +rk and recompute t h e  step.  For curplete 

de ta i l s  for  assessing the  quadratic model see V a r d i  (1980). 

) < <  q(xk+') we recunpute the 
k If  

Step 7 of t he  Algorithm" 
T Assume f i r s t  that s and y have been corrputed and s y > 0. 

+ We want t o  obtain B = BFGS(B,s,y). We have a Cholesky deccmposition 

of B,B = UT. Let J+ be such that  J+J+ = B+. Dennis and Schabel 
T 

(1980) derive the  BFGS update by 
T T  J+ = L + (y-Lv)v /v v 

T + 
where v = (y s / s  Bs) Ts. Let us take a Q-R decomposition of J , i .e.,  

T T 
+I +' 

find Q+ and L (Q+ orthogonal, L upper triangular) such that 

T 
J+ = Q L  . + +  

decanposit ion 

Let w =  

is already an 

Getting a Q-R 

T + +  + +  Thus B+ = J J = L L and t h i s  gives us the  Cholesky 

of B'. 
T T  (y-Lv)/IIvII and z = v/1IvII. LT 

upper triangular matrix and mT is a mtrix of rank one. 

decmposition of J+ by using Givens transformations is 

Then J+ = L + zwT. 

T 

therefore much cheaper than the  

t ion require i f  w mde no use of this information. 

Dennis and Schabel (1980). 

5ns/2 operations that a Q-R deccmpsi- 

For d e t a i l s  see 

When sTy < 0 we do not update and take 

L+ = L. 
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The program contains a subroutine that obtains a rough estimate of 

the condition nunber of B by checking that the r a t i o  between the largest  

diagonal element and the smallest diagonal element of L is no greater 

than a prescribed bound. 

tains the snallest diagonal elment is changed. 

If the r a t io  is too high the column that  con- 

Testing t h e  program: 

The program has been tested extensively with test problems that  

appear in  the l i t e ra ture  and with problems that  were provided by users 

a t  Cornell University. 

We give the results of four t e s t  problems that are often used to 

t e s t  minimization codes. 

Mei's MINOP, Powell's MINFA, Davidon's KOPTR and Fletcher's W l  are 

Comparisons of our code, FMIN, w i t h  Dennis- 

made. 

Since MINFA's resul ts  were reported (by Dennis and Mei (1979)) with one 

specific ro we use this r . 

MINOP and MINFA use, as does our program, an i n i t i a l  radius. 

0 

Problem 1: Wood's function 
f(x) = 1O0(x2-x1) 2 2  + ( l -X1 l2  + 90(x4-x3) 2 2  + (l-x3) 2 

- 

+ 10.1[(x2-1) 2 + (x4-l) 2 3 + 19.8(x2-l)(x4-1). 

0 Four s ta r t ing  points; r = 10. 

Problem 2:  Rosenbrock's function 
2 2 

Five s tar t ing points; r = 3. 

f 
f(x) = 100 (x1-x2)2 + (l-X1) 

0 

Problem 3: Box's 2-variable function 

0 Five s tar t ing points; I' = 3. 
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Problem 4 :  Powell's 4-variable function 
4 f(x) = (x1+10x2)2 + s ( ~ ~ - ~ ~ ) ~  + (x2-~x3)4 + 10(x1-x4) 

n 
U Three s tar t ing points; r = 3. 

In the next table we report the number of functions and ( in  

parentheses) gradient evaluations f o r  each of the algorithms. 
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Table of Results 

Problem Star t ing  
1Number Point FMIN MINOP MINFA OCOP'IR M O  1 

1 (-3,-1,-3,-1) 66(44) 71(61) 117(117) 72(50) 129(129) 
(-1.2,l ,l. 2,l) 81 (39) 59 (50) 73 (73) 83 (61) 64 (64) 
(-3,1, -3 ,I> 47 (31) 45 (35) 94(94) 83(62) ' 115 (115) 
(-1.2,1,-1.2,1) 131(76) 117(103) 119(119) 138(95) 94(94) 

2 (-1.2,l) 27(18) 28(25) 37(37) 54(43) 28(28) 
( 2 , - 2 )  41 (28) 43 (42) 39 (39) 45 (41) 20 (20) 
(-3,635,s. 6 21) 38 (27) 56 (54) 39 (39) 56 (50) 70 (70) 
(6.39, -0.221) 32 (19) 61 (60) 68(68) 35 (32) 74 (74) 
(1.489,-2.547) 46 (30) 39(36) 43(43) 54(47) 28(28) 

3 (5 ,O) 28(15) 23 (20) 20 (20) 16 (14) 24 (24) 

(0 9 0 )  19 (14) 18 (16) 27(27) 18(17) 21(21) 
(0,201 29(18) 28(25) 21(21) 19(16) 21(2i) 
(2.5,lO) 12(4) 8 (5)  19 (19) 15 (14) 16 (16) 
(5,201 26(12) 23(17) 36(36) 26(25) 28(28) 

4 (3, -1 ,O,U 33 (28) 37 (35) 
(-0.1,l.-0.1,l) 33(25) 25(23) - - - 
(-0.6,1,  -0 .6 , l )  35 (29)  27 (25) 

(not available) 
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